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ABSTRACT .
i (S
B W
The resistance and mobility functions which completely characterize the -
linear relations between the force, torque and stresslet and the translational o
and rotational velocities of two spheres in low-Reynolds-number flow have been !
calculated using a boundary collocation technique. The ambient velocity field V:
is assumed to be a superposition of a uniform stream and a linear (vorticity 0
and rate-of-strain) field. This is the first compilation of accurate }q
expressions for the entire set of functions. Our calculations are in gs
agreement with earlier results for all functions for which such results are '™
available. Our technique is successful at all sphere-sphere separations !
except at the almost-touching (gaps of less than .005 diameter) configuration. ;;i
. A
' New results for the stresslet functions have been used to determine QL
Batchelor and Green's (1972) order «° coefficient in the bulk-stress (7.1 :ﬁ
instead of their 7.6). The two-sphere functions have also been used to N
r determine the motion of a rigid dumbbell in a linear field. We also show that L
certain functions have extrema. The source (FORTRAN) code is furnished in the
appendix.
A ;
/ '
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SIGNIFICANCE AND EXPLANATION

The calculation of hydrodynamic interactions between particles is needed
for the understanding and control of many natural and manufacturing processes,
for instance, those involving sedimentation, colloidal stability, -aspension
rheology, and cloud formation. A fundamental approach to these problems often
requires detail information on the hydrodynamic interactions between two
spheres, that is, the forces, torques and stress dipoles induced by the
particle motions and the ambient velocity. Until now, the available
information was incomplete.

This report furnishes the complete solution of the problem using a
collocation approach. The results are in excellent agreement with all earlier
solutions for special cases of the complete problem. The source (FORTRAN)

code has been included.
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THE RESISTANCE AND MOBILITY FUNCTIONS OF TWO EQUAL
SPHERES IN LOW REYNOLDS NUMBER FLOW

*,1,2 **,1,3

Sangtae Kim and Richard T. Mifflin

1. Introduction

In this work we have used the boundary collocation technique to calculate the
set of functions which describe the hydrodynamic interaction between two rigid
spheres in low-Reynolds-number flow. Such information is needed in
theoretical investigations of the behavior of suspensions of small
(sub-micron) particles as shown in the review articles by Batchelor (1974) and
Jeffrey and Acrivos (1976). Specific applications are found in studies of
sedimentation velocities (Batchelor 1972), rheological properties (Batchelor
and Green 1972 ), Brownian diffusion (Batchelor 1976) and fixed-bed
permeabilities (Howells 1974). In all cases the specific information that is

required is the linear relation between the rigid-body motion of the spheres,

+ 8 x(x-% ),

%
in an ambient field, U(x) = g' + Qxx + E-x on one hand and on the other hand
the force, torque and stresslet (moment) exerted by each sphere on the fluid.
The notation is as follows: gc and g, are the translational and rotational
velocities of the sphere centered at X, a=1,2; g'. f and E are the uniform
stream, constant vorticity and rate-of-strain fields. The force, torque and
stresslet on each sphere are given by the following integrals of the stress,

g, over the surface of sphere a:

g*n da,

- -Jg (g—ga)x(g-g) da,

I
P

This report is also available as Rheology Research Center Report #94.
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S = «=f -
2a 2’s, [(x % )gn + g-u(z-za)]dA-

ANV | OO

n is the outward normal vector for the surface.

-
-

X

Because of the linearity of the governing equations, the solution of our

Y

hydrodynamic interaction problem (with equal spheres) is completely specified
by 19 independent scalar functions. We present here what we believe to be the
first complete solution of this problem. We emphasize that our method can be
? reduced to a 60-line routine that, with the help of subprograms for the
special functions (Legendre functions) calculates the entire collection of
functions. Others have solved various subsets of this problem using
bispherical coordinates (Stimson and Jeffery 1926; Goldman, Cox and Brenner
1966; Lin, Lee and Sather 1970), method of reflections (Happel and Brenner

. 1965) and lubrication theory (O'Neill and Majumdar 1970), as reviewed by

; Jeffrey and Onishi (1984). These authors also present a comprehensive
solution of the important subset involving the force and torque in an ambient
field composed of a uniform stream and vorticity field, using the
twin-multipole variation of the method of reflections.

V) A more detailed discussion of hydrodynamic interaction is presented in
following subsections where we review the resistance and mobility functions.
In Section 2, we show how the boundary collocation technique of Gluckman

et. al. (1971) and Lamb's velocity representation can be used to solve the
boundary value problem assoclated with each resistance function. Formulae
which relate the resistance functions to the coefficients in the velocity
representation are found in Section 3. We state our principal results in
Section 4 and {llustrate sample applications in Section 5, including the
correction of Batchelor and Green's (1972b) result for the coefficient of the

c2 term in the bulk stress (7.1 instead of their 7.6) and the hydrodynamic

- 9%

functions for the rotation of a rigid dumbbell in a linear field. We have

b B 4

placed our source code and sample calculations in the appendix.
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1.1 The Resistance Problem

Following Brenner and O'Neill (1972), we define the resistance problem as that
in which the force, torque and stresslet are to be determined for a specified
particle motion in the ambient field. The linearity of the Stokes equations

permits the expression of the forces, torques and stresslets in the following

matrix form:

(5] (4" a8 [ )
3 £ F PP P | puey
3 R A A
S A A i 2,78
8 S L L E
&5 SN S I U A

The 6X6 matrix of tensors has been named the grand resistance matrix by
Rallison (1977).

We have followed the development and notation in Jeffrey and Onishi
(1984) and Jeffrey (1984) throughout this section. A, B, § and C are second
rank tensors, G, §. H and E are third rank tensors and the M tensors are
fourth rank tensors. We shall see below that there are inter-~relations
between certain tensor pairs. These pairings are highlighted by using the
same letters and the symbol, ~.

We first reduce the number of independent tensors by using properties
that are independent of the particle geometry. The reciprocal theorem of
Lorentz (1906) can be used to show that the resistance matrix is symmetric

(Brenner and O'Neill 1972 and Hinch 1972), i.e.:

a _ ,Ba 08 _ npBa aB _ Ba
AiJ Aji' B1J BJi' Cij ch' (1.1a,b,¢)
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gee . gBe joB . yBo MO8 B (1.1d,e,f)

ijk kij® i3k~ ki’ 138~ k243°

We may impose additional relations because S and E are symmetric and

traceless. The condition on S permit us to set

al _ cab ad _ yoB aB _ uaB
Siyk = Cyik’ His = Byqpe Mijke = Yyike (1.2a,b,¢)
G‘;fk -0, H?fk -0, M??kz - 0. (1.2d,e,f)

while the conditions on E require that

aB aB af af af - uaB

Gijk = iy Hijk = Higye Mijke = Mijeke (1.3a,b,¢)
af aB aB a0 '
6ty = o, HyS, = o, MES e = O (1.3d,e,f)

The symmetry of the two-sphere geometry implies that each tensor

satisfies:

where 5=§2-§1 is the center-to-center vector. Finally, the axisymmetry about
the sphere-sphere axis implies that each tensor can be decomposed into
expressions involving no more than three scalar functions (Brenner 1963,
1964). Jeffrey and Onishi (1984) designate these scalar functions as XzB(R),
YZB(R) and ZzB(R) with P, a and B denoting the appropriate tensor g“af They
reserve the letter X for those funtions that arise from axisymmetric flows.
(More specifically, we shall see later that the X, Y, and Z functions arise

from boundary conditions involving spherical harmonics with the azimuthal

number, m, equal to O, 1 and 2 respectively). Thus, with d = R/R:

af A A _
AiJ XquidJ + Yas(ﬁij didj)’ (1f5a)
p38 . pba _ B (1.5b)

13 = By1 7 YagC1gkk’

.xn -\‘) -
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- af c C
i: Cij - xasdidj + ch(dij-didj). (1.5¢)
V aB ~8a G ] G -
:::. GUk ka xus(didj 3“13)dk + ar(m(diaJk + d3°1k 2d1dek). (1.5d)
Xy
2 aB _ pBa _ \H
Ry HiJk Hkij Yaa(diejkzdl + djeikzdz)' (1.5e)
\ A
] ad _ 3 21 _1 .
= MEE 3xg (444,738, )(4,d)= 39, , (i.5¢)
.
- 1
) — -
'iﬁ + > aB(diéjzdk + djaudk + diéjkdz + djéikdz "didekdl)
" e 1M (s, 8., + 6. 6, - 8,.6,, +d.ds,, + 6, ,dd
s 27aB” 1k j¢ JkiL 157k 1757ke 17k
o
jﬁ - diéjldk - dJcSudk - disjkdﬁ - djsikdz + didjdkdz)'
;: We now nondimensionalize these scalar functions so that they become
;: functions only of the dimensionless separation parameter R/a. The
A0\ '
- . dimensionless functions will be denoted with the symbol *.
- %8 - 6vaa®, %8 - una%p®f, % - 8ra’c®8, (1.6a-c)
:- g* - ura’g®®,  §% - ena’y?®, 4P - Zomadyh (1.64-r)
:fé The dimensionless functions for the tensors on the diagonal of the grand
Nt
*
‘Q resistance matrix will approach unity for large R because the scales were
~
*.. chosen by considering the single-sphere result.
N
ki 1.2 The Mobility Problem
-7 _
2 Following Batchelor (1976), we define mobility problems as those in which the
'$ particle forces and torques are prescribed in the ambient field and the
:i particle motion and stresslet are the unknowns. The formulation of the
:\.
% mobility problem is rather awkward from a mathematical perspective since the
{3 boundary conditions involve the unknowns, but in many problems the forces and
- :
L4
j torques are the prescribed physical quantities and the particles must move
N
T A A T TR T T A AT S T TG TR A AR T T T T T R S e P T TS
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accordingly. In later sections, we shall first solve the resistance problem
and then use the relations between the'mobility and resistance tensors to
solve the mobility problem. Again, the linearity of the Stokes equation

allows us to write:

. U, -Ux,) N ( _11 212 511 §12 é‘ ) ( u-1E1‘
U,~U(x,) -21 _22 §21 g2 =2 u-122
o,-8 l211 912 .11 -12 51 u-11.1
0,-8 ) b2 p2 21 2 P u-1Iz
u-1§1 a11 812 g11 D12 El1 e
| u-1§2 | ‘ s21 822 921 l222 92 ‘

As in the resistance problem, the number of unknowns can be reduced by
applying the reciprocal theorem, and the consequences of S and E being

symmetric and traceless. Thus:

aB Ba 58 . pba aB Ba

aiJ = aji’ 13 31 cij = cji' (157a,b.c)
~a 1a 2a sa 1a 2a
m1 2 ! 2 (1.76)

igkt T Pigks " Pkeig T ety

and equations which are analagous to (1.2) and (1.3).

As before, the two-sphere symmetry allows the following decompositions:

a a a

ajy = X gdydy * yaﬁ(aij-didj),' (1.8a)
bfg - y:eeijkdk, (1.8b)
°?§ - ngdidj + Ygs(éij-didj). (1.8¢)
sfgk xga(didj- %6ij)dk ygB(dicjk + 48y, - 24,0,4)), (1.8d)

T TR TS TS TR PR TN -ym
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nggk - y:B(dieszdg * dyey0dg)s (1.8e)
o = 3o (d;d,= 38, ) (8,dp- 38,0) (1.81)
+ -;-y‘:s(disﬂdk * 46,4, *+ a6, d, + 4,8, d) - Udd,dd,)
o LP (8,6, + 6,8, = 6,.6,, + d,d. b, + &, .dd
2208 %1k%30 T C3k1n T O13%se * 91930k * S13%9,
= 484,04, - 46,y - A8, A, - 4,6, d, ¢+ d,d,d,d)).
The nondimensionalizations of these functions are as follows:
;“B - 6na§a8, §°8 - Nnaagas. ;as - BnaBQQB. (1.9a-c)
g% = g®/(22), p®f - p8, p* - Lradpes, (1.9d-1)

1.3 Relations between the Resistance and Mobility Functions
Our numerical technique solves the resistance problem. We obtain the mobility
functions by using the following relations between the (dimensional) mobility

and resistance functions. 1In matrix rorm; we have:

[

[ 211 e12 511 §12 ( 511 ﬂ12 §11 §12 -1
221 §22 §21 §22 é21 J.\22 §21 §22
E,11 t_)12 E11 212 - 1_3” §12 911 912
221 222 921 222 J §21 §22 g21 g22 J
. [
D G e R N NN A N B e AR A
.............. T LN T e e N I NN RN
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Y 12 12 g1 1, 12
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- 21 22222 2,20, 22

-
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“ud g - -1

- SANNISCIRIRRE a2 g g2 g

o e -

> @ 2 g 2 G2 P pR g2

5

e Moo12 1 12 =1

' e M ¢ E

108 21y 21 22 2

.. - = - - = = J

}}.‘ The relations for the functions follow as:

i-.';,

- o

°¢ a a [ A A -1

8- 1. %12 | _ | *nn %2 (1.10)
~ - a a A’ A

" 21 *22 | | X21 X3

N c e 9 r .C c ¥-1
| X1 %o i X4 X12 (1.11)

c ¢ c C

5 X201 X33 | X1 X2
5 - a a b b r A A B B Y -1

P) Vi1 Yi2 Yy Yo v Y2 Y4y Iy (1.12)
o a a b b A A B B

= Yor Y2 Yiz Yoo | [ Yar Ya2 Y2 Y2

-' b b ¢ ¢ B B c C

2 Yir. Y2 Yy Y2 I Y2 Y Y2

~ b b e e B B &
‘ REERZERSERES LYar Y2 Y Y22 |
B )
sSSN
L~

o [ 8 8 G G a a

g 1 %12 X X2 | | ¥ %2 (1.13)
LS -

5 g g G G a a

o | X271 X322 X21 X2z X271 %2

~ -f-‘.?*ft-f:?:ﬁt?f:&:{‘&:{:'2 D N R A St A R
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& Y99 Y2 i The
) g 8 - B
X Yo1 Y2z Va1 Va2
e G G H H b b
~ _ - [ 8 3
7 ot Yz T T | [ Y a2 Y Yz (.14
G G H H a .a b b
" - -
QD Yar Y2 Yy Y2l | Yar Yz Yi2 Y22
w b b e e
5 Yn Yz Y e
. b b c ¢
-2 (Y21 Y22 Y21 Y22
3
. o _ M G (8 8 G .8 8y -
- Xy = =g+ Xp) ¢ xg (8« xB) + X0 xF, ¢ 1B, (1.15a-c)
AR m_ _ M M G ,.8 8 G .8 8
B Yo = ~(Xgy * Yg2) * Yoq(¥3y * ¥39) * Yo(yyp + ¥3p)
H,h . .h h . .h
[ AR AR
?}: m M M
< - - . - ‘a°
# 20 = ~(Zh, *+ Z.,),  for o =1,2.

The above equations hold for two unequal spheres. If we limit the

': analysis to the case of two equal spheres, then the symmetry relation,

o)

i: equation (1.4), implies that subscripts "22" and "21" may be replaced

f; everywhere by "11" and "12" respectivelyi For functions associated with B, b,
;j’ G and g, this substitution requires a change in sign. From here on, without
:' loss of generality, we shall restrict our attention to the "11" and "12"

e s .

~ functions,
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ES. 2. Boundary Collocation
The boundary collocation technique developed by Gluckman, Pfeffer and Weinbaum
(1971) has been used to solve a wide variety of low-Reynolds-number problems
where the system boundaries do not conform to a single orthogonal co-ordinate
system. A related technique was developed by O'Brien (1968) to calculate the ‘
flow past a slightly deformed sphere. The earliest applications of the
technique were limited to axisymmetric problems which were solved using the
stream function. Since then, the technique has been applied directly to the
Stokes equation and three dimensional problems including the sedimentation of
three spheres with centers in a vertical plane (Ganatos, Pfeffer and Weinbaum
1978), the motion of a sphere between two parallel infinite plates (Ganatos,
Pfeffer and Weinbaum 1980) and the sedimentation of a sphere in an inclined
channel (Ganatos, Weinbaum and Pfeffer 1982). For our two-sphere problem, a
suitable co-ordinate system exists. Nevertheless we use the collocation
technique because accurate numerical results are obtained with minimal human
computation.

The essential idea behind the coll&cation technique is as follows. The

velocity field can be represented by an expansion in terms of basis functions,

each of which satisfies the equations of motion. 1In general, the number of

elements in the basis set is not finite because of the interactions between

oA 4
.

eCy e
ikl S

the spheres. However, the higher order elements are usually unimportant.

Consequently, the series can be truncated at N terms and the coefficients of

l.‘l

']
-

S

ol the retained basis functions determined by setting the boundary condition at N
.'5

N collocation points (hence the name boundary collocation). It is found

empirically that the lower order coefficients converge rapidly as N is

[ “
..'jﬂafbif

$

increased. This is important since, as shown later, the force, torque and

Ay
.‘c) » _.\_

stresslet depend only on the first and second order coefficients.

L4 &
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N 2.1 The Velocity Representation
[
>\ The velocity field, v, satisfies the Stokes equation:
\

-

’

i -Vp + wViy = 0 (2.1)
2

. and the equation of continuity:

\

Y

Fal

‘: V‘! - o. (2.2)
& The boundary conditions are those associated with each resistance problem.

;. Our goal in this section is to construct general forms of the velocity
ﬁ representations and boundary conditions which together encompass the complete
0y

H set of resistance problems. Then, any resistance problem of interest can be
ﬁ obtained by selecting the appropriate set of parameters. This structure is
§ readily passed on to the computer codes and the result is a versatile, yet

’ short subroutine (less than 60 lines of code) which calculates the entire

N collection of functions.’

A

'Q As shown in Happel and Brenner (1965), the disturbance velocity field can
i be represented using Lahb's general solution:

. -

: Wx) ~v(x)=z1 | Vo_oq * Vx(xx_pq) (2.3)
" n=1 .

“~ .

s (n+1) - (n-2) r2

b, * n(2n-1) % P-n-1 Zn(2n-1)" VP-n- } '

i

2 where P_p-1° o_n_1 and X_p-1 are exterior spherical harmonics.

ﬁ Following Ganatos et. al. (1978), the velocity is written as a

superposition of two expansions, one centered at sphere 1 and the othér at

5 sphere 2.
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v(x) - y”(;) -nf1 { Vo£;21 + Vx(g1x£;z1) (2.4)

(n+1) (1) _  (n-2) (1)
* nien-1) %1 P-n-3 2n32n-1)r:Vp-n-1

(2) (n+1) (2) (n-2)

(2) _ 20.(2)
* Ve 2y ¢ Vxleoxonny) Y wEneh) T2 P-n-1 T Zn(zn-1)T2"P-n-1 2
with r =xx, r_ =|c| fora=1,2.
~Q - =Qa a -

The spherical harmonics are expanded as:

() ; P P8 oo ) [al®s o a(a)sinm¢]
P-n-1 n=0 n a On "Om mn i
(a) T -p-tom (a) (a)
LN -mfo r Pn(cose ) [by "6, + b “sinme] ,
n Rl 8 b
x£§21 -z r " 1P;’(cosea) c;:)cosm¢ .
m=0 )

For each resistance function, we will actually require only one
particular m, the value which appears in the surface velocity, and the
¢-dependence will factor from our problem as shown in the next subsection.
Thus for two-sphere problems, a one~dimensional collocation (in ) is

possible, even if the flow is three~dimensional.

2.2 Application of the Boundary Conditions

The disturbance field must decay far away from both particles. At the sphere
surface, the disturbance velocity must equal a surface velocity, !s' which is
the difference between the part;cle's rigid-body motion and the ambient
velocity. Thus all relevant cases are included in the following expression of
the boundary condition at sphere 1:

2 g

¥, = 1§ T Vr.lm
5 4=t oo [ v 1Fg(cos@)lA 6, + A sinme] } (2.5)

+ Vx{g1 rfP?(cose)Bgmcosm¢] } ].
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We now examine the form taken by Lamb's representation at the sphere

¢-component equation.

shows the required v  for each resistance function.

Table 1.

Translation along sphere-sphere axis.
Translation perpendicular to axisf
Axisymmetric straining.
Rate-of-strain as in ZX shear rlowf
Hyperbolic straining ;n XX plane.
Rotation about sphere-sphere axisJ,

Rotation with axis perpendicular to
sphere-sphere axis.

ADAC IR B S b SRRt St el Nl gl IR R A R e A A SR R A L R P A R Ja A MR RS |

..............

In (2.5) the cosm¢ terms are omitted for m21, since those resistance problems
are equivalent to those obtained from the sinm¢ terms (with a rotational

co-ordinate transformation about the sphere-sphere axis). The following table

We use the cylindrical coordinate system (z,R,¢) as shown in
The z, R and ¢ velocity components in equation (2.4) are equated to
the corresponding components of the surface velocity in (2.5). Dependence on
¢ occurs for problems with m21, but factors out as follows:
in the z-component and R-component equations and a factor of cosm¢ in the

Thus the boundary conditions on sphere 1 (i.e. r

13

Resistance
Function(s)

ot X
o
R
z 42,2
x3®
!08' x;ﬂ

a factor of sinm¢

1-1)
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2 @
_qya-1 (a);_(n+1) -n m . _(n=2) _-n ,,_.2,.m,
20T e sy fa GPnE T R e (8P (6
(a)r_ -n-2 m -n-2 ,,_.2\,M
+ b [-(netde W75 g PR )+ p TS (1-gD)PI(E) ]
(a)r.-n-1 _m
+ me [ra Pn(gu)] ]
m _p2ypll 1 m
- Am[zgpz(e,) + (1-gJ)P'(E,) ] + By wP (E,) (2.6a)
g ; { a(“)[ (n*1) "B g5ing P%(g )
an ‘(4n-2) o an’a
a=1 n=%
SR P e g2 e+ mstnope3 |
(a) -n-27_ m - m+1 m
* o, [-(n+1) sineaPn(gc) [EaPn .(£u)+msineaPn(Ea)] )
- (a) -n-1 _m+1
Can o P (&) b . (2.6b)
- A, [estne PP(g.) - [g, P (g, )+msine, P(g.)1] - B, P™'(c,)
im 174 ™ 1°¢ '™ 14 ™M am L ™
i ; { -ma(a)[ (n-2)  -n Pm(g )/sing ]
a=1 n=i mn nZEn-Z;'a n "o o
-n-2 -n-1 m
+ mb;:)[ru Pﬁ(ea)/sinea] + c;:)[ra sinean'(Ec)] }
- A um(E )/sine, + B, _sine Pm'(E ) (2.6¢)
am ™M 1 Lm 1°% | :
where Ea - cosea. There is an analogous set of equations from sphere 2.
> Equations (2.6a) and (2.6c) follow directly from the z-component and
;L: ¢-component equations. Equation (2.6b) is obtained by subtracting the
32: ¢-component equation from the R-component equation. This last maneuver allows
f; us to remove the singularities from the poles. Further details are given in
Section 2.5.
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>
{5 The series is now truncated at N terms. The 6N unknown coefficients,
?S a1 ’ b1 , c1 ’ a2 , b2 and c2 , are determined by applying the truncated
\ mn' "mn’ “mn’ “mn’ “mn mn
:3 version of (2.6a-c¢) at 2N collocation points on the surfaces and solving the
fi resulting 6Nx6N system. We remind the reader that the parameters m and £ are
- specified by the resistance problem. In the next section, the computations
'EE are simplified by exploiting the mirror symmetry with respect to the XY plane.
x£
o, 2.3 Mirror Symmetry about the XY Plane
“ For the general problem of two unequal spheres, it has been shown that the
Y
ES larger sphere requires more points (Liao and Krueger 1980). For two equal
i‘ spheres, the points are distributed in equal numbers between the two, at
EE equidistant spacings (Gluckman, Weinbaum and Pfeffer 1971). Furthermore, we
: decompose each resistance problem into subproblems that exploit the fore-aft
?: mirror symmetry with respect to the x: planeJ Symmetry dictates that the
‘i coefficients in the series centered at sphere 1 either equal or are negatives
S of the corresponding coefficients in the other series. This also holds for
;: the truncated expansion as long as the collocation points on sphere 2 are
j: placed at the mirror images of the points chosen for sphere 1.
iz An examination of the resistance problems reveals that they either posess
:E one of the following two types of symmetry or may be decomposed into two
:E: subproblems, with a subproblem of each symmetry type. A velocity field with
iii mirror symmetry with respect to the XY plane satisfies:
§ v (%, ¥,2) = v (x,y,-2),
i}; v (%,y,2) = v (%,y,-2),
22 v, (x,y,2) = -v_(x,y,-2),
:E (The flow vectors in the half-spaces are mirror images of each other). A
ui field with mirror anti-symmetry satisfies:
=
'33?.:‘-3-‘.32?.‘;?-. T o A




v (%,¥,2) = -v_(x,¥,-2),
vy(x.y.z) - -vy(x.y.-z).

v,(x,y,2) = vz(x.y;-z)f

For problems with these symmetries, the coefficients for.the terms

centered at sphere 2 are given by:

(2) (1)
a ' =Sa

(2) 1
bon = Sbpn

céi) - Sc;;)

where the symmetry parameter, S, 1s defined by:

1 for problems with misror symmetry,

-1 for problems with mirror anti-sjimetry.

and the collocation equation from a point on the surface of sphere 2 becomes
identical to that from the image point on sphere 1. Thus equations (2.6a-c)

and thelr counterparts from sphere 2 reduce to:

- 2
(1) -aya-1p _(n+1) -n & _ _(n-2) _-n ,,_,2,.m,
z { an f (-S) .[Wra EaPn(Ea) mrc (1 Ea)Pn (Ea) ]

n=4 a=1
2
(1) _eye=1r -n-2 n “n-2 ,,_.2,p0,
"oy L (8) [ =tetdr 7% g PlCe ) + ¢ 7% (1-g0)P0 () )
2
(1) _aya-1p -n-1 _m
+me, ° I (-S) [ r, Pn(aa)] }
a=1
- m - 2 m, 3 m
Aypl28,P (&) + (1-61IP."(E,)] + B, aP (E,) (2.7a)
S N A N N AR
""" PN L G0 ¢ Ay Sy W - 0 . ¢ SENCRTH LY RO HAY
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» 2
(1 a-1 (n+1) -n m

r | ag ' LS ' Tin=zy "o Sine P (E)

n=% a=1

(n-2)  .-n EEGP§*1(EG) + msineapﬁ(ea)l ]

* n(in-2) "«

2
a-1 -n-2r_ m _ m+1 n

Gf1s r " C[-(n+1) stne PU(E) - (€ PR (€,)+msine PL(E )]
2

- ) a=1 _-n=1 m+l
Con cf1s ro P (&) } (2.7v)

(1)

+bmn

Esine1P:(El) - [51P2*1(51)+msine1pﬁ(e1)3] -B P“*1(£1)

= A ' L

Lm[

(n-2) _-n

() 2 a1 m
L Umag, I STl SRyt Palta)/etne,]

2
(1) a-1 -n-2 .m
+mb af1s [ r. Pn(ea)/sineu]

2

(1) a-11 _-n-1 m,
+ep cf1s [ r, ~ sing P (ca)] }

) m :
- Azmsz(E1)/sine1 + Blmsine1P£'(E1) . (2f7c)

Thus each resistance function is calculated by solving an appropriate set of
problems of the form given by (2.7a-c). We shall see that each resistance
function is a linear combination of a small number of the lower order
coefficients.

The remainder of Section 2 contains information relating to the code
development from (2.7a-c). Readers who are more interested in the end

applications may prefer to skip to Section 3.

2.4 Axisymmetric Problems

In axisymmetric problems certain velocity components vanish identically

because of symmetry. The 3Nx3N collocation system reduces to either an NxN or

2Nx2N system. Axisymmetric problems with v¢-0 have m=0 so that equation
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(2.7¢) and cmn vanish identically leaving a 2Nx2N system. On the other hand,

{e axisymmetric swirl problems with v¢ as the only nonvanishing component reduce

:: : to an NxN system since amn’bmn' (2.7a) and (2.7b) vanish identically. The

- reduced system can be obtained from the c;;) terms of (2.7b) (i.e. the 2-3

. ' block of the larger system).

. 2.5 Stability of the Collocation System of Equations

In this section, we review earlier reports on the stability of the collocation
system of equations and present new findings.

Problems occur in the collocation scheme if points are placed at the
equator, 61 = 1/2, and the poles. If a point is placed at the equator, the
terms from sphere 1, which are normally greater than those from sphere 2
vanish (since cose1 vanishes at the equator) thus destabilizing the system.
This problem was circumvented 1n_the.original work by Gluckman et. al. (1971)

by using twin points at 89° and 910; an approach which they justified by

l."" e

examining the convergence behavior, in the limit of small ¢, for twin points

l"'l'

at 90-¢ and 90+c degrees.

At the poles; the system is indeterminate because equations from the R

s f Y
LV RPN )
.

and ¢ components become identical. Gluckman et. al. (1971) avoided this

RN

problem by not placing any points at the poles.

D

We have avoided the problem at the equator by using an even number of

points spaced at equidistant intervals. The indeterminacy at the poles was

LA .
. e 4
LN R

*
AN

removed by taking the difference of the R-component and ¢-component equations

b))

to arrive at (2.6b) and (2.7b). The source of the indeterminacy i{s then

T ]

apparent. Equation (2.7a-c) have zeros of multiplicity m, m+1 and m-1 at the

poles. They may be removed by factoring sinme1, ginm*1e1 and sinm'1e1

respectively.
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when the spheres are far apart, accurate solutions are obtained with as

few as four points. Tests show that our collocation scheme compares favorably
with that of Gluckman et. al. {1971) for R/a between 2.1 and 10.0.
Furthermore, in the strong interaction region, our scheme converges faster
because the error profile in the gap region is reduced by the "Hermite
interpolation" nature of the approximant. Although we do not place a point at
the equator, the large number of points used in the near-field, e.g. N=60,
ensures the presence of collocation points near the equator.

The code development required a system solver and a routine for the
spherical harmonics. We used the LINPAK routines DGECO and DGESL to invert
the system. However, essentially identical results (15 significant figures)
were obtained with other (slower) routines. A recursion scheme was developed
for the spherical harmonics because our application required the harmoﬁics
divided by factors of sinme. The stability of these routines was spot checked

by comparison with the tables in Abramowitz and Stegun (1964).
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2%
O 3. Calculation of Resistance Functions
[4
\F In this section, we extract the resistance functions from the information
-3

ﬁ; contained in the collocation solution. There are several methods for

I\ :

s \ .
‘}: obtaining the force, torque and stresslet on a particle from the velocity
\-{ solution (see Chapter 3 of Happel and Brenner, 1965). We present here a

» ‘J-

. .

- simple but powerful method.

S5 '

o The velocity field which was previously represented by Lamb's general
o solution can also be represented by the twin multipole expansion (Jeffrey,
o

o 1974):

-‘Iu . :

N 2

! - z { Ea - (§q + Ia) ov $ oo }o;(!-!a)/(a‘"u)'

a=1

jlj with the Oseen tensor, I defined by

N

w*, 4

) I(X) = 7 6§ + Ty XX .

_ 1O " TqT £ * T2
.ﬁ? This representation is useful because it reveals tﬁat the force on particle a
J& appears as the coefficient in the term that decays as |:_:-:_t“|.1 while the

2

o dipole moments, §c and Ia = - %g-!c appear as the coefficients in the terms
;i: that decay as |§-§a|-2. More explicitly; in the notation of Chwang and Wu
.;: (1975), the force, torque and stresslet appear as the coefficient of the

o .

. Stokeslet, Rotlet and Stresslet. Therefore, we rearrange the terms in Lamb's
\"}

?: representation to form the Stokeslet, Rotlet and Stresslet and obtain the
i% relation between the force and dipole moments and the coefficients (in Lamb's
RS representation).
-
-:ﬁ The above ideas are put into practice for each resistance problem in the

: following two-step procedure.

1) In the first step, we take the arbitrary but convenient convention of
setting the appropriate Azm or Blm equal to one (and set all others
equal to zero).




ALCEALCEURR LR LR A O S G COEARR R LR AL DR U R LA A £ O A N A A N AR AR IR SRR A |

22

2) The force, torque and stresslet in the multipole expansion are expressed in
terms of the resistance functions as given by (1.5a-f). This expansion has
the same form as the (rearranged) Lamb's representation.

After the above prescribed algebra, we arrive at formulae for the resistance

functions in terms of the coefficients in Lamb's solution - amn(l,m.s),

bmn(l,m,s) and cmn(z,m,s). The arguments, &, m and S indicate which
coefficient is retained in the surface velocity'(see Table 1 on page ?3) and

the type of mirror symmetry. As discussed earlier, each function requires a

superposition of a mirror symmetric and mirror anti-symmetric problem, with

the exception of the scalar functions from M which already posess the

symmetry. As shown below the mirror-symmetric solutions are summed to give

the 1-1 functions and their difference is taken to give the 1-2 functions.
The functions associated with translational motions and rate-of-strain

fields, with the argument (%,m,S) denoting which A is set equal to one, are

Lm
given by:
A ol (1,0,-1) + 2. (1,0,1)] (3.3a)
11 =330 0 0110 .
2 lta (1,0,-1) - a.(1,0,1)] (3.3b)
12 301+ ' o1 "7 :
o Ya (1,1,-1) +a.(1,1,1)] (3.3c)
1 T3t 1pttels .
e = -lra  (1,1,-1) - a, (1,1, (3.34d)
12 3tath b 1980t .
~p ,
Y11 - -[011(1v19-1) + 911(191'1)3 (3-39)
B om el 1,-1) - e (1,1.1) |
12 011 B » ) c11 .' » (3‘3:) <
X% - - Ya (1,0,-1) + a..(1,0,1)] (3.38)
11 age(1:0s 02' % 3.38
- Hagy(1,0,-1) = ag,(1,0,1)] (3.3n)
-%[312(1,1,—1) +ap,(1,1,1)] (3.31)
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(3.39)

- - 1

x:'1 * "142 = T0%02(2:0»1) (3.3k)
~ -~ 1

!1M1 + ¥'1M2 = 1_0612(2)10-1) (3!31)
M oM 1 | : ~

211 * % = 7082202 0). (3.3m)

The functions associated with rotational motions, with the argument (%,m,S)

denoting which B o is set equal to one, are given by:

L

§$1 - 15["01(7"’"” + ¢4(1,0,1)] (3.3n)
. = -Xe (1,0,-1) - ¢ (1,0,1)] (3.30)
12 = = 3LCp (1,0, 01¢1+0 .
Y -« e (1,1,-1) + ¢, (1,1,1)] (3.3p)
(11 = 3teq1 (1,1, 1111, .
¥¢ - e (1,1,-1) - ¢ (1'1"15] (3.3q)
2 = 3Eeyy (11, 1111, : .
Yy, = - gla(110-1) + a,(1,1,1)] (3:3r)
“12 =" %{"12(’_"?"?) - a,,(1,1,0]. (3.3s)

This completes the calculation of the resistance functions. The mobility
functions are calculated from the resistance functions as prescribed by

equations (1.10) to 1.15).
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Ei 4. Results and Conclusions

{i~ In this section, we examine the results for the resistance and mobility

'3 functions and compare them, where available, with those obtained b)( other

E? meansf The resistance and mobility functions are plotted vs. the reduced

'f sphere-sphere separation, R/a, in Figures 2a-2 and 3a-f respectively. These
Eﬁ plots were generated using 12 collocation points for R23 and 24 points for

S% R<3. At these levels, convergence has been obtained far beyond the resolution
‘\‘ of the plotter. We note that ¥$1, ¥T1+.12, y$2 and y? are not monotonic

E? functions but have extrema. Thié phehomenon is consiétent with the

.E; requirement that two neutrally-buoyant spheres move as a rigid body when in
% contact.

Eé For comparative purposes, an extensive table (not presented here but

Sé avallable upon request from SK) was created for all functions. In the

- construction of the table, the number of collocation points was increased

éﬁ until convergence was obtained to five significant figuwres. This table was
vf used as "the collocation results™ in the comparison. Except for almost

{3 touching spheres, the number of collocation points and therefore the order of
gﬁf the system of equations was well within the memory limitations of a VAX

3? 11/780. At sphere-sphere gaps of O%O?a the most difficult function, xf,,

éi converged to three significant figures at 60 collocation points. The program
ik: in its present form allows up to 100 points.

ﬁ; In the far-field, asymptot;c solutions are either available or readily

obtained by the method of reflections. The collocation results matched these
far-field solutions for all functions. In fact, the far-field solutions were

the primary defense against program bugs.

A more stringent test was available for resistance and mobility functions

from A, B, C, a, b and ¢ because of the recent twin-multipole expansion

P S R i L LI R R R Rt Rt A A A AR R A RO A A A A N A Ay
RO R AL R R AL AR L S SRS G SO "_\ L. ARCRA SO RERC LU BRI
A PO A AL '-'.‘-::. N A A .-QK,_‘.&‘ & - A

”

- o .
NP
. vy e -




*uorjeviedas aiayds-aiayds °SA SUOTIOUNJ IDUBISFSAA 3Y] °Z 2anIyg

-n-. --ﬁ.o-

o 9 [ & 9

| T
9 1
L Idum
ﬁ ! -
! X ore-
X L we-
".. a re A a A a 'y e adh d e
. azr} v
’
P "/ )
’ . i & tu-
: | H_
3 ’re-
W\. - H oe~ s
W\ | 108- 2 L 1
- 1ov-pe o
; [ ]
\. 3 1= [ 3
- | |\\ o o
rl X ¥ 4 a2 A a2 & : y o 2 a2 'y a2 a2 a 3
’ _ 4&—* anNv dﬂ-m ‘qe i -w Ny V1 —m 4

RN
,




4 .Vﬂ

A AN A
26

s

R AR A

E et

R AN

-

5

v
[

SENRI AR

&N

]

/4
“ B are-
1 {ove-
| 4 9v'0-
zm
— "{ove &
]
(2]
! 1908
8 ore
A A A A .-‘

9214 NV DZIX

i 14

] 4
|
W
_
s {ot
S L1
L : oy
a . x 2 N J gy
Siig any onx e
o
ol & [
1
, £
5
L e
A A A A A \‘ 'o-

O1IX ANV JT1IX i

A Thl
PPN

oy
*

~> e
* L




L7 /8
14 [ g 14 [ 2
° y 4+ e AR B — v o
b : \! 2 19
i {ve | | o,
]
qJ 008 3 498
. "
3 1 99’8 L 1oe
L wt s [ 14
ﬁ [ 4] b _ [ a4
P
Py i A i A 4 00t A a2 a A A A A ” -(--nn.-. .|
[ ] . a v
N2IZ+NIIZ ‘MSIA+NIIA h ¢ NSIY+RIIX b 4 S
v - v v v NS
Ps
o
N >
g
PR 5
/e A
o o5
. we I s S s 7,0
[ )
{cove- A
L ! .\.. ....
{zowe- M
AR 4
s A
V.IQ
, e 4 100°0— -\f .
m o M
H cos® R 4
[ s
A e L s \.
100
2000
I w'e
cane
A A A A, e A we A A A A A A A e
nzix- “fz 1139 "
L 4
s % r YN AL ... .... - - NN N . 6 Ty %y e
-\.\.\.\*1!- b\(l. ..... \..- .\.4. ,\\.. -\q\f\(\f-...f -b.|-c er). ' -\~\-.. ,_.. s ...,... ® .\..-J.-.....




28

‘uorlevaedas aaayds-saayds *sA suopiouni LIF[Fqow ayl °f 2anI4

e N
X0
s v re
o00'® ATy
) D‘A
.-h ... 3
) .\l‘\ I-‘J
9000 v ....... m
» a0
XX
O-Qa. '\Pu-\.q-\
3 R
- ....v..
910’0 MY
v
0200 X
s20'0
T
20
vo0
"o
s0'0
[ ]
ose =
#
-
280 .
»
10’0
o8'0
7Y )
" a s L A A A e PR " 001
cumm QUNV w21X ‘qe

OISR, 4 ARCERUWY g LR AT S 4=t



|
-
. j
4

o) s
W-n <.-
w..” X
m, v
o ;

A ~ o

2 S

P N n- & A
m._ N N -“- N
TD”, v v v v oo'e [
L ,,
ﬁf. e .y

. Lty
£ ) O
m. ool y

W. - -

2 2 A
\ [ wer ol
va -f\.d‘?
"m.. we R
9 - e

5

-.- A A A A A C-.. .
.. #214 Gy 21X ye¢ 1L anv BTIx - -6

6. '\'-
: s

v-

; R

2 . . »__ ¢ o [ [ 4 ) L v s e e

W-. L 2 v .

m.. i [ e
Y., - oo
'b

2 [

o {eoo &

v 5 s

2 s

5 {ree 3

o [ :

- | i o {o0w

‘nf A v

s, ! - Jere

w.. . e
w.‘-. A 2 Py A . Y 'y e - - A A A A ot Pﬂf
A oZ1£ NV 0213 3¢ o114 QNv oJ1X  "%¢ KAAe
. - o, W
. X
b, Yy
" R
- AN
w..., -\..- m
: %
- v
p * w A A
Y, it
W.lnl-ﬁnla P Ven i SR JAPEINPY. . ¥ A el PRI R VDYWL WE W VEFCICICY S W f\f




g o
. e
o o
- ) e A 0
g :
A b 20°0-
3 e
-
L] A A A A A A ga’.
. wyz gNV Wil 1€
L
v
- e ov'e
. L 200
L va'e
. g 00’8
" , . S.aw
3 | oro
2 : 2o
. ! o
 * s _:.o
£
n! A A Iy I A .ﬂo‘
', yz14 *fe
L3
ARG R G N RN AR LA 2 AN, P A LA LY
~ .\ v\h‘w-& p- .vg--\ -J- W.. w .a-\ ~\ ?\ -v --d ‘-4 .- * o ¥ .u ¥ ¥ .u-\.-n,u -n f‘\h-\w - - u\wﬂv&rz’\b‘ -*n ] f\ ,\v %

%

Fo
Letg
SRVDN )

3
55

Uy

AR AL S \- i..‘
DTN
GO SAMNEREY

A
»

.-

S
SRR

NRNLELN
AR
s




vy

31

results of Jeffrey and Onishi (198M)f The collocation results matched those
obtained from a fifteen-term form of their expansion solution. The agreement
was exact (in the sense that it was limited only by machine roundoff errors
e.g. over 12 significant figures) except at the small separations mentioned
above, where both techniques require special modifications.

Accurate results are also available for certain combinations of the g
functions. The relative velocity between two spheres in a shear field which
was obtained by Lin, Lee and Sather (1970) using bispherical coordinates
furnishes a test for xf1-x$2 and y$1-y$2. Here again, agreement was obtained
to all significant rigufes‘preaentéd in the earlier workf

In the near-field, the collocation results for é, B, C, a8, b, and ¢ were
compared with the near-field lubrication solutions. The latter are collected
from the literature and presented in Jeffrey and Onishi (1984). Plots for the
mobility functions presented in Figures 4a-j show that the two solutions match
in an overlap region, but also show that the collocation technique, at least
in its current form, cannot "turn.the sharp corner™ in the y functions.

In conclusion, we believe that we have successfully calculated, using the
Soundary collocation technique, the complete set of resistance and mobility
functions required for determining the rorce; torque, stresslet on and motions
of two equal sized spheres in an ambient velocity composed of a uniform stream
and linear field. The results are accurate over all separations except at
almost-touching (R/a < 2.01). In particular, this report provides an accurate

algorithm for the computation of the stresslet functions over a wide range of

sphere-sphere separations.
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Near—field and Collocation
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5.

Sample Applications

5.1 The Bulk Stress in a Suspension of Spheres to Order g?

Batchelor and Green (1972b) have derived the following rigorous expression for
the viscosity of a suspension of identical rigid spheres in a steady pure

straining motion.

Mgppe/W =+ 30+ cz{-g- + %f'z' J(pale)glag |, (5.1)

where [ = R/a and J(g) and q(z) are determined from the mobility functions as

J(g) = -1 - ‘g{ ;'f + 2§‘1‘ + 2;’1" . (5.2)
alg) = [1 - Az exp{f‘ %%?E%%dx}. (5.3)

A(g) and B(g) are mobility functions that arise in the expression for the

relative velocity between the two spheres and are as follows:

. as -Ag . ,

B(c) = 8(y5,-y8,)/z. (5.5)
At the time of their work, information on J was limited to the far-field
region (obtainable by the method of reflections) and the value at touchingi
As mentioned in their paper, the interpolation of the J curve in the region
2.0025<z<3 was the primary source of uncertainty in the final numerical
result.
Figures 5a-5d show plots of J and also their stresslet functions K,L and
M. The dashed line is the result obtained using the method of reflections,.

The "x" at R/a = 2 indicates the values for touching spheres. As is the case
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Comparison of the collocation and method of reflection solutions -

for the stresslet functions of Batchelor and Green.

o o
L | § I ] L J L) L | | 1) —— [ ]
= -~ - - ™
e <~ @® = -1 ©
o 1™~ o -1~
o
4O\ »
X > =
"
3 4
4
& . . . 3 .
(=) -4 N (2] <P n (=] o
S 3 S 3 3 S S = =
° 9 it T T T © © ©
1
]
-
-‘ \\.\.‘...- 4o -hcvq-n.--' R e - .
TS\ SRRV WA IRRXXANNE, B SBD0bhs



39

o o
N v ¥ L v Y ﬂ - T T Y T <
.- e 8.
., K o poc
.I.
hl - i «
. M
v, o 4 ©
. R | ~
. (2]
. (2] s
s oy
o9
' - - = .
v = « u
5 @
X o
-
IDs - e.
o
v L
: " -
: ~
E; ot L «
< M 2 o
’ 4 .am —L A A 1 o
s o~ Q Qo 0 o 0 o
= 8 8 2 2 8 8
' o c c c = c
;. r
2
<d
7
11
-
o

-

\u ’, \i ‘ & q\ -. .-. ..- v o -\..\ A P ) * -.- -. -\--.. ‘.y -,* . P 1_-15\ . -\a\ -\ v o nf\ﬂ..-\..\.-\-d \-‘..- (ALY ;‘qun ) v N ..- °. ,., '.. -. u.. [AENAS L. Y

~nh »
NN . 0 A - W A (}



v - R
oS N

with many of the mobility problems, we see that the method of reflections
result is accurate to quite small separations. The explanation is that in
mobility problems, the leading terms in the higher order reflections are from
the relatively weak dipole-dipole interactions. We note that L and M are not
monotonic.

When (5.1) is evaluated with the collocation result, we find that the
integral is less than the earlier estimate. Specifically, the integral from
2.0025 to 3.0 is found to be 0.384 instead of 0.449. Thus the coefficient of

the ¢ term is 7.1 instead of 7.6, i.e.,

5 2.
Mepg/M = 1+ 30+ T.1c

The new result is within the #10% uncertainty bound stated by Batchelor and

Green.

5.2 The motion of a rigid dumbbell in a shear-field

Rigid dumbbells have been used to model suspensions of polymers with stiff
backbones (see Bird et. al. 1977). In their models the hydrodynamic problem
is simplified by assuming that the dumbbell consists of two point forces
connected by a rigid rod. (The rod has no hydrodynamic resistance). 1In this
section, we show that if one replaces the point forces with spheres, the
necessary hydrodynamic functions can be extracted from our two-sphere
functions.

The motion of a neutrally buoyant, axisymmetric particle in a shear field
was completely solved by Bretherton (1962) who showed that the motion.of
almost all axisymmetric particles was the same as that of some ellipsoid of
revolution. Thus, for our dumbbells, we use our two-sphere functions to find

the "effective spheroid".

e Ll O L - -* -r-r-rvr-rcr La " N o r.r oy ', - AN OISR
AN AT A AL -?'.':.r:". BT VAT AN ".h"' > "J"‘ a3 4 X ‘4‘} :_‘ \q‘\-"'-l':‘."“f: -'.‘ ':.r‘.' )
R A AN AR ARER AR o \_-._‘,.',-.._ O ‘.\ 1.'_ -\. 5 ‘_ LTy
v - . ‘
: AT Ll G LHTL IR (N o



-“'-'-.‘- '-. 'o:.'o -‘.-.

e s ®
L s

.
LI

.

AT L

(i) ',l_-.‘
R

4".‘7-‘.‘\'” h
SN

|
."c\v 'y

== o
L4

h
l‘ > " l.
B

’
B
5‘ J'J

-
[}

y 1Y 5
o
¢ RN

,I
A

vyt

'
&

s 8 8

R I
s

AR P

-

O O A A N A i S A S N AR ALY LY A P AT L Ol AL S L DAL AEOMEO SO A

41

The geometry of a symmetric dumbbell is completely determined by the
center-to-center separation, R and sphere radii, a. Furthermore, if all
distances in the problem are scaled with "a", then the possible dumbbell
shapes are spanned by varying R/a over [2,»). If the dumbbell rotates about

its center of mass as wxx, then the spheres move as:

Ug = U * ek, o=l2, (5.6)

We can now write the forces and torques on each sphere in terms of the
two-sphere resistance functions. The torque on the dumbbell is the sum of the
torques on each sphere plus the couple from the forces on the spheres. After

some algebra, we arrive at:

'r1 - ciJ(”J-QJ) - HijkEJk' (5.7)
where the dumbbell resistance functions can be written in terms of the
two-sphere resistance functions as:

c.. =x%a.a, + 155, . - d.4.) (5.8)
i) k| ) i i°3°° . *
c c .,C
with X’ = 2(x11+x12)
(o 1.2, A A B B C C
and Y7 = SRU(Y)7Y5) ¢ 2R(YSYo) ¢ 20X Y.
H = !H(d € +d e )d
13k JokiL TkoJLR L. (5.9)
H_ 1.2,,A _ A 1..vB _vB y _ o/vG _\G H H
with Y7 = gRE(Y,,=Y)0) + gR(Y 7Y05) = ROY  7Y5) + 20Xy, +Y0,).
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If we set T = 0 in (5.7), we can solve for the angular velocity as:

-‘

\ c

3 w =g+ [2¥/x}ax(E-0). (5.10)

. A prolate spheroid with aspect ratio p rotates as given by (5.10), but with

\ ZYH/!C replaced by (p2-1)/(p%+1). Therefore, the dumbbell moves like a

- prolate spheroid with the aspect ratio,

.

‘ o = [(1 + 2v8Cy /(1 - 2vBx©y )12, (5.11)

g

\ ]

\ Plots of the "equivalent-spheroid" aspect ratio vs. the dumbbell shape

g .

) parameter, R/a are shown in Figure 6.
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Eg Appendix

:% 1. Notes on the Computer Programs

:§ The following section contains listings of five programs. The "main" progranm,
{. MANDR.FOR requires only two inputs: the number of collocation points and the
i: scaled separation between the spheres, R/a. MANDR.FOR occupies five pages and
1%- this length may give the wrong impression that the algorithm is involved.

:: However this program merely sets up the appropriate inputs for the entire

‘\ collection of resistance functions and passes them to subroutine STOKES.FOR.

i The heart of the algorithm is contained in STOKES.FOR, which occupies only a

E single page. If one were interested in a particular resistance function, the
¥ correct set of input paéameters for STOKES.FOR may be deduced by examining the
B

E appropriate module in the main program;

- As mentioned in Section 2, axisymmetric problems reduce to smaller

- systems. In axisymmetric translational and straining problems, the resulting
;§ 2Nx2N system consists of the upper-left blocks of the general systenm.
1§97

Consequently, in STOKES.FOR we need only insert the line:

o

~ e

IF (M .EQ. 0) IDIM = 2¥NPT

i i i
& o
e .

before calling the inversion (LINPAK) subroutines.

In axisymmetric swirl problems, the NxN system is not located in the

rr‘rr‘r—.r &
ol I Tl 3 B
‘JI"‘I'. ¢

upper-left portion of the general system. Consequently, the appropriate block

-
-

i,

cannot be obtained as easily from the general case. We have taken the simple

Al

remedy of taking the 2-3 block out of STOKES.FOR and creating the Degenerate

72

Feer

subroutine, STOKESD.FOR.

(4
, L,

The following parameters are passed in and out of STOKES.FOR:

el

-
* >

R: Sphere-sphere separation (scaled by spﬁere radius).

VNN
[ R

T
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NSTAR: Order of the lowest non-zero multipole. (e.g. if the hydrodynamic
force on the sphere is nonzero, NSTAR=1, If the force is zero,
then NSTAR is 2 in our application because of the dipole moment.

M: Parameter m from the resistance problem.

SGN: Symmetry parameter S.

NPT: Number of collocation points (N in the text).

RHS: One dimensional array which contains the RHS of the system of
equations. It originates from the surface velocity evaluated at
the N collocation points.

AMN: One dimensional output array of the an (with n = NSTAR, ... ).

BMN: One dimensional output array of the bmn (with n = NSTAR, ... ).

CMN: One dimensional output array of the Con (with n = NSTAR, ... ).

Function subroutine PNS(N,M,X) calculates Pﬁ(x)[sine]-m. (PNS stands for
P—No-Sine)f PNSP(N,M,X) does the corresponding steps for Pz'(x). Subroutine
DMATIN.FOR is used when the mobility functions are Qalculated from the inyerse
of the resistance matrix.

If these programs are installed on another computer, the sample run

provided after the program listings may be used to test the installation.

'-‘f“n"‘ A A P A AL P A P A L P U PR “- . . St A AT A e
- Lo tas . T A AT AT A A A AT A AT T AT AN .
NI .-:.':.\'.-.‘4:,_.\ e S L L T T e R e

", L) A




PNt Rlahie oy sy LIS DA A A A ) e A A A A ) AN L R L e PATACINCE WA RN S A e 20l oy

)
\':
T
s 46
s
=
&
N C MANDR.FOR
A \ c...‘.‘.‘..‘....‘.‘O..‘.'.........."..0‘0.....0.......‘........
\ C MOBILITY AND RESISTANCE FUNCTIONS FOR 2 IDENTICAL SPHERES .
c BY BOUNDARY COLLOCATION OF LAMB‘S GENERAL SOLUTION .
-~ [ o} .
c SANGTAE KIM .
¢ DEPARTMENT OF CHEMICAL ENGINEERING .
- c AND  MATHEMATICS RESEARCH CENTER .
- [ UNIVERSITY OF WISCONSIN .
\. C .
N c RICHARD T. MIFFLIN .
~7 c DEPARTMENT OF CHEMICAL ENGINEERING .
> c PRINCETON UNIVERSITY .
. ¢ .
e C VERSION 2: APRIL 24, 1984 .
> c.......‘..‘..‘....‘0.....‘.“.‘0..".‘.'..‘..........‘..“..‘.O
C PROGRAM WAS DEVELOPED AND TESTED ON A VAX 11/780, 1983-1984
c
- c MAIN PROGRAM: MANDR
¢l c SUBROUTINES CALLED FROM MAIN: STOKES, STOKESD, DMATIN
’. C SUBROUTINES CALLED FROM STOKES, STOKESD: LINPAK ROUTINES DGECO,DGESL.
S c PNS, PNSP
v 4 c
c
NG C PROGRAM DESCRIPTION
v : ‘ |
o, .
';-;. C MAIN PROGRAM SETS PARAMETERS CORRESPONDING TO AMBIENT VELOCITY FIELD
o C FOR EACH RESISTANCE FUNCTION. AFTER CALCULATION OF THE MULTIPOLES,
A C MAIN ALSO SCALES THE RESULT ACCORDING TO THE NON-DIMENSIONALIZATION
C FOR EACH RESISTANCE FUNCTION. MAIN CALCULATES THE MOBILITY FUNCTION
o C BY INVERTING THE GRAND RESISTANCE MATRIX.
o c
C GIVEN THE PARAMETERS FOR THE AMBIENT VELOCITY, SUBROUTINE STOKES
Yot C RETURNS MULTIPOLES COEFFICIENTS. THE SYSTEM OF EQUATIONS IN THIS -
N C SUBROUTINE ARE OBTAINED BY APPLYING THE BOUNDARY CONDITIONS AT EACH
; C COLLOCATION POINT.
c
o C SUBROUTINE STOKESD IS A SUBSET OF STOKES AND 1S USED FOR THE
. C DEGENERATE CASES INVOLVING THE RESISTANCE FUNCTIONS X11C AND X12C.
N c
N C PNS AND PNSP ARE DERIVED FROM THE ASSOCIATED LEGENDRE FUNCTIONS
- ¢
IMPLICIT DOUBLE PRECISION(A-H,0-2)
ol DIMENSION RHS(300),AMN(100),BMN(100),CMN{100),
X ° COS1(10@),AY(4,4),DUMMY(4,1)
i c
- C READ IN:
C 1) NUMBER OF COLLOCATION POINTS (EVEN INTEGER): IPTS
) C 2) CENTER TO CENTER SEPARATION BETWEEN SPHERES: R
o ¢
(d : READ (48,5) IPTS.R - '
,}’j S  FORMAT (110,F10.0)
¢
«. C SET COLLOCATION POINTS:
- ]
'*'2 Pl = 3.14159265358979D0
DIPTS = DFLOAT(1PTS-1)
4 DO 10 I=1,1PTS
THETA = DFLOAT(1-1)/DIPTSeP]
; 10 COS1(1) = DCOS(THETA)
A c
.,f! c
I{l
3
i ]
J " ; d'\i\::‘(\ \ \l'{ .lv {f~f { .| - \’ mi .“‘%\\ .\- *~ )_.\:' Lo '.:-‘r ‘f..n"_-"' '.q"_l: 'f\f fa_ - _\}{
NN a v i R
AN l,L WY AR VO L WY o“.v\n y\ck A0 . AV 7




[

e .'v “'n ‘.l "3’5'\’

'
:561 S

v,
oIy

»
8! v
R ." -.

i,

4

o,

(00N P AR,

OO

c
C sossesnsees CALCULATION OF X11A, X12A, X11G, X12C eseccooces
c

QOO0

0OO0O0

20

DO 20 I=1,1PTS

12 = 1+1PTS

13 = 1241PTS

RHS(1) = 1.00

RHS(I2) = ©.D0

RHS(13) = ©.D®

CALL STOKES(R,1,0,-1.D0,1PTS,RHS, AMN, BMN ,CMN)
T1 = 2.00/3.D0cAMN(1)

T3 = =.5D0AMN(2)

DO 30 1=1,1PTS

12 = 1+IPTS

I3 = 12+1PTS

RMS(I) = 1.D0

RHS(12) = 0.D0

RHS(13) = ©.D0

CALL STOKES(R,1,0,1.D0®, 1PTS,RHS,AMN,BMN,CWN)
T2 = 2.D0/3.D0sAMN(1)

T4 = ~ . 5D0«AMN(2)

X11A = .5DRs(T1 + T2)
X12A = .5D@s(T1 - T2)
X11G = .5D0s(T3 + T4)
X12G = .5D0e¢(T3 - T4)

sseses CALCULATION OF Y11A, Y12A, Y11B, Y12B, Y116, YI2G sesseses

L

DO 40 I=1,IPTS

12 = 1+1PTS

I3 = 12+IPTS

RHS(1) = ©.D0 -
RHS(12) = ©.D0

RHS(I3) = 1.D0

CALL STOKES(R,1,1,~1.D0, IPTS,RHS, AMN, BMN,CWN)
T4 = 2.00/3.D0sAMN(1)

T3 = 2.00CMN(1)

TS = —.5D0eAMN(2)

DO 50 Ia=i,IPTS

12 = I+1IPTS

I3 = 1241PTS

RHS(I) = ©.D®

RHS(12) = ©.00

RHS(I3) = 1.00 ,

CALL STOKES(R,1,1,1.00, IPTS,RHS,AMN,BMN,CVN)
T2 = 2.00/3.D0sAMN(1)

T4 = 2.00«CMN(1)

T6 = —.5D0°AMN(2)

Y11A = .5D0s(T1 + T2) '
Y12A = .5D0¢(T2 - T1)
Y118 = =.500¢(T3 + T4)
Y128 = .5D0s(T3 - T4)
Y116 = .500s(TS + T6)
Y126 = .500¢(T6 - T5)
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L C esssevsssscess CALCULATION OF X11C, X12C sovscscosnessee
\! ¢
' DO 60 I=1,IPTS

o

68 RHS(1) = -1.D@

“a CALL STOKESD(R,-1.D@,IPTS,RHS,CMN)
AN T1 = CMN(1)
‘.‘_\ c
AN DO 7@ 1=1,IPTS
W) 70  RHS(I) = —1.D@

vl CALL STOKESD(R,1.D®, IPTS,RHS,CMN)
o T2 = CMN(1)

.k_) c

ol X11C = .5D0«(T1 + T2)

D X12C = —.5D0s(T1 - T2)

3 ¢

C ssssssecee CALCULATION OF Y11C, Y12C, Y11H, YI2H sesecescess

' ) c

N DO 8@ I=1,IPTS

= 12 = 1+1PTS

- I3 = 1241PTS

- RHS(1) = 1.D0

Y RHS(12) = 0.D0

80 RHS(13) = -COS1(1)

i CALL STOKES(R,1,1,-1.D0, IPTS,RHS,AMN,BMN, CMN)
T1 = 2.D0/3.D0eAMN(1)
3 '-“.‘ T3 = M(‘)

o TS = —.25D0+AMN(2)

e ¢

& DO 90 I=1,IPTS

) : 12 = I+IPTS
y . 13 = 1241IPTS

RHS(I) = 1.D@
RHS(12) = ©.D@
Ny 90  RHS(13) = —COS1(1)

N CALL STOKES(R,1,1,1.D0,1PTS,RHS,AMN, sw .CWN)
T2 = 2.D0/3. oeomm)
! T4 = CWN(1)

- T6 = —.25D0+AMN(2)

o Y11C = .5D0¢(T3 + T4)
N Y12C = .5D0e(T3 = T4)
s Y11H = 500+ (TS + T6)

A Y12H = .500¢(TS ~ T6)

Y c

C escssssese CALCULATION OF X1IMEX12M, YI14YI2M, Z114Z12M seeccceses
3 c

o~ DO 100 I=1,1PTS

3 12 = I+IPTS

Ny I3 = 124IPTS
oo RHS(1) = 2.D0COS1(1)
AN RHS(12) = -1.D0@

° . 1e@ RHS(I3) = o.D@

N CALL STOKES(R,1,0,1.D0, IPTS,RHS,AMN,BMN, CMN)
X1112M = . 108+AMN(2)
“ . c

$ DO 110 I=1,IPTS

- 12 = I+IPTS

> I3 = 12+1PTS

- RHS(1) = 3.D0

o RHS(12) = ©.D0

A 110 RHS(I3) = 3.D0+COS1(1)
n CALL STOKES(R,1,1,-1.00,IPTS,RHS, AMN,BMN, CMN)
P Y1112M = . 108eAMN(2)
4

S

»
s, -

.4 -
qr-.\ \

B S W N N be NI .r .((.’.-.'V R SLS R e
\"-‘-\ I J‘}' J' "V\f q:f-_w'.-) 4' ’ J‘ .c‘.*i "J' > -.:.\’:._‘ Sy \.‘T‘\ )\ q_ 1 {\‘_\. 08 :: t ‘ T -h"l
Yy S

w0 ‘.I‘a AR I .l;,,ll. 3 K " ; .,-xo-‘.-




(7.7,
v
"o
v':-' 4
et 9
@
e
Y
Z-}_}
\:\-'
B c
ad 00 120 l=1,1PTS
W 12 = 1+1PTS
“angy 13 = 12+41PTS
Y RHS(1) = ©.D®
N RHS(12) = ©.D0
- 120 RHS(I3) = 6.D0
N CALL STOKES(R,2,2,1.00, IPTS,RHS,AMN,BMN, CMN)
N Z1112M = . 1DReAMN(1)
c
C wasrmmmt END OF CALCULATIONS FOR THE RESISTANCE FUNCTIONS seemmmmuns
._-:‘.' c .
e WRITE (41,500) IPTS,R
S WRITE (41,510)
WRITE (41,520) X11A,Y11A,X12A,Y12A
o WRITE (41,538) Y11B,Y128
. WRITE (41,540) X11C,Y11C,X12C,Y12C
ol WRITE (41,550) X11G,Y11G,X12G,Y126
e WRITE (41,560) Y11H,Y12H
e WRITE (41,570) X1112M,Y1112M,21112M
o~y c
2:;. (3 PART 11 OF THE PROGRAM CALCULATES MOBILITY FUNCTIONS
.- c
c
ks Y11A = 6.DOsY11A
-3 Y12A = 6.D0eY12A
= Y11 = 4.DReY11B
o) ‘Y128 = 4.DOeY12B
e Y11C = 8.D0sY11C
- Y12C = 8.D0eY12C
c
" AY(1,1) = Y11A
Py
e <. AY(1,2) = Y12A
Y AY(2,1) = Y12A
e AY(2,2) = Y11A - - -
. c
o~y AY(3,1) = Y118
2 AY(3,2) = Y12B
Vo, AY(4,1) = =Yv128
e c AY(4,2) = =Y118
>
- AY(1,3) = Y118
] AY(1,4) = -Y128
e AY(2,3) = Y12B
[ 4 AY(2.4) = =Y11B
» M c
o AY(3,3) = Y11C
i AY(3,4) = Y12C
" AY(4,3) = Y12C
v AY(4,4) » Y11C
‘W C
DO 700 K=1,4
- 700 DUMMY(K,1) = ©.D@
:.‘\-_. CALL DMATIN(AY,4,DUMMY,1,DETERM,4)
N c
~
o Y11AM = AY(1,1)¢6.D0
b Y12AM = AY(1,2)¢6.D0
Y11BM = AY(3,1)¢4.D0
, Y120M = AY(3,2)¢4.00
N YI1CM = AY(3,3)e8.D0
M Y12CM = AY(3,4)+8.D0
Al c
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X11AM = X11A/(X11AeX11A = X12AeX12A)
X12AM = =X12A/(X11AeX11A = X12A¢X12A)
X11CM = X11C/(X11CeX11C ~ X12CeX12C)
X12CM = =X12C/(X11CeX11C = X12CeX12C)

Y11HM = =Y11GeY11BM = Y12GeY12BM + Y11HeY11CM + Y12HsY12CM
YI2HM = Y11GsY12BM + Y12GeY11BM 4+ Y11HeYI2CM 4+ Y12HeY11CM

X116M = (X11GeX11AM + X12G+X12AM)/3.00
X12GM = (X11GeX12AM + X12GeX11AM)/3.00
Y116M = (Y11GeY11AM + Y12GeY12AM)/3.00 —Y11HeY11BM+Y12HeY128M
Y126M = (Y11CsY12AM + Y12GsY11AM)/3.D0 =Y11HeY12BM+Y12HeY11BM

XIMM = <X1112M = . BDOe (X116-X12G) e (X126GM-X11GM)
YIMM = =Y1112M = 2.4D0e (Y116-Y12G) e (Y12GM-Y11GM)

+ 2.4D0¢ (Y11H+Y12H) o (Y11HWHY12HM)
ZINM = ~Z1112M

m——mem— END OF CALCULATIONS FOR THE MOBILITY FUNCTIONS semmssmssmmas

COMPUTE BATCHELOR AND GREEN'S K, L, M AND J FUNCTIONS

BOK = ~Z1MM - 1.D0

BGL = ~YiMM — 1.D® — BGK

BOM = ~1.5D0s( XIMM 4 1.D0 + BGK + 4.D@«BGL/3.00 )
BGJ = ~1.0 — 0.20X1MM — .49 (YIMHZIMM)

WRITE (41,510)

WRITE (41,620) X11AM,Y11AM,X12AM, Y12AM

WRITE (41,630) Y11BM,Y12BM

WRITE (41,640) X11CM,Y11CM,X12CM,Y12CM

WRITE (41,650) X11GM,Y11GM,X126M,Y126M - -
WRITE (41,660) Y11HM,Y12HM

WRITE (41,670) X1MM,YIMM,ZIMM

WRITE (41,680) BGK,BGL,BGM,BGJ

FORMAT (15X, 'NUMBER OF POINTS: *,14,19X,'R = *,F8.3,//)

FORMAT (23X,°X11°,11X,°Y11°,11X, *X12°,11X,°Y12*,/)

FORMAT (5X,'RES. FNCS. A*,F11.6,3F14.8,/)

FORMAT (5X,°RES. FNCS. B',F25.6,F28.8,/)

FORMAT (5X,°RES. FNCS. C*,F11.6,3F14.8,/)

FORMAT (5X,°RES. FNCS. G*,F11.6,3F14.6,/)

FORMAT (5X,'RES. FNCS. H',F25.5,F28.8,/)

FORMAT (5X,°RES. FCNS. XTIMHX12M,Y11M+Y12M,Z11M4ZI2M: ",
F11.6,2F10.6.//)

FORMAT (5X,°MOB. FNCS. A’,F11.6,3F14.6,/)

FORMAT (5X,°'MOB. FNCS. B',F25.§,F28.6,/)

FORMAT (5X,°MOB. FNCS. C*,F11.6,3F14.6,/)

FORMAT (5X,°'MOB. FNCS. G*,F11.6,3F14.6,/)

FORMAT (5X,°*MOB. FNCS. H',F25.6,F28.6,/)

FORMAT (5X,°MOB. FNCS. X1M, YIM AND Z1M:',F13.6,2F12.6,//)

FORMAT (5X,'MOB. FCNS. K,L,M AND J:',4F12.5)

STOP

END
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SUBROUTINE STOKES(R,NSTAR,M,SGN,NPT,RHS ,AMN,BWN,CMN)
IMPLICIT DOUBLE PRECISION (A=H,0-2)
DIMENSION A(300,300),.RHS(1),IPVT(300).Z(300),

° AMN(1) ,BMN(1),CMN(1)
DATA LDA/309/

C DIMENSION OF MATRIX A MUST EXCEED OR EQUAL 3eNPT.
DM = DFLOAT(M) :
DO 10 K = 1,NPT
K2 = K + NPT
K3 = K2 + NPT
N = K + NSTAR - 1
FN1 = DFLOAT(N+1)/DFLOAT (4oN-2)
FN2 = DFLOAT(N-2)/DFLOAT( Ne(4oN-2) )
DO 10 I = 1,NPT
12= 1 + NPT
13 = | + 2eNPT
THETA = DFLOAT(I-1)/DFLOAT(NPT=1)e3.14159265358979D0
CO1 = DCOS(THETA)
SI1 = DSORT(1.DO-CO1eC01)
R2 = DSQRT(SI1sSI1 + (R4CO1)ee2)
€02 = —(R+CO1)/R2
PNS1 = PNS(N,M,CO01)
PNS2 = PNS(N,M,C02)
PPNS1 = PNS(N,M+1,C01)
PPNS2 = PNS(N,M+1,602)
PNSP1 = PNSP(N,M,CO1)
PNSP2 = PNSP(N,M,C02)
C RATIOS OF SIN1/SIN2 FROM FACTORING OF SINES IN EQUATIONS

RZ = ( 1.D0/R2 )ssM
RR = RZ/R2
RPH] = RZeR2
A(I1,K) = FN1e( CO1ePNS1 = RZeSGN+CO2sPNS2/R2¢sN )

° = FN2¢( PNSP1 — RZsSGNsPNSP2/R2esN )
A(1,K2) = —DFLOAT(N-M+1)e( PNS(N+1,M,CO1)

° = RZeSGNePNS (N+1,M,C02)/R2se (N+2) ) i
A(1,K3) = DMe( PNS1 — RZsSGNePNS2/R2ss(N+1) )

A(12,K) = ( FN1 + FN2eDM Yeo( PNS1 + RReSGNePNS2/R2eeN )
o + FN2e( CO1ePPNS1 + RReSGNeCO2¢PPNS2/R2¢eN )
A(12,K2) = =DFLOAT(N+W+1)e( PNS1 4+ RReSGNePNS2/R2es(N+2) )
A ° —~CO1ePPNS1 — RReSGNeCO2¢PPNS2/R2¢ s (N+2)
8 A(12,K3) = —PPNS1 ~ RReSGNePPNS2/R2¢¢(N+1)

A(13,K) = —DMsFN2¢{ PNS1 + SGNeRPH1ePNS2/R2eeN )
A(13,K2) = DMs( PNS1 + RPHI1eSGNePNS2/R2e¢e(N+2) )
A(13,K3) = PNSP1 + RPH]eSGNePNSP2/R2¢s(N+1)

10 CONTINUE

IDIM = 3eNPT

IF ( M .EQ. @ ) IDIM = 2eNPT

CALL DGECO(A,LDA,1DIM, IPVT,RCON,2)
CALL DGESL(A,LDA,IDIM, IPVT, RHS,0)

DO 340 J=1,NPT
Ji = J + NPT

. J2 = J1 4 NPT
AMN(J) = RHS(J)
BMN(J) = RHS(J1)

340  OMN(J) = RHS(J2)

RETURN
END
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SUBROUTINE STOKESD(R, SGN,NPT ,RHS,CMN)
IMPLICIT DOUBLE PREC,.ION (A-M,0-2)
DIMENSION A(100@,100) ,RHS(1).CMN(1),IPVT(100)
DATA LDA/100/
C DIMENSION OF MATRIX A MUST EXCEED OR EQUAL NPT,
00 10 K = 1,NPT
N = K
FNY = DFLOAT(N+1)/DF LOAT (42N-2)
FN2 = DFLOAT(N-2)/DFLOAT( Ns{(4eN-2) )
DO 12 1 = 9 ,NPT
THETA = DFLOAT(I~1)/DFLOAT(NPT—1)¢3.141592653589790D0
CO1 = DCOS(THETA)
SI1 = DSQRT(1.D8~CO1+C01)
R2 = DSQRT(SI1¢S11 + (R+CO1)ee2)
C02 = ~(R+CO1)/R2
PPNSt1 = PNS(N,1,C01)
PPNS2 = PNS(N,1,002)
C RATIOS OF SIN1/SIN2 FROM FACTORING OF SINES IN EQUATIONS
RR = 1.D9®/R2
A{1.K) = ~PPNS1 — RReSGNsPPNS2/R2se(N+1)

1@ CONTINUE

IDIM = NPT

CALL DGEFA(A,LDA,IDIM, IPVT, INFO)

CALL DGESL(A,LDA,IDIM, IPVT, RHS,@)
340 OWN(J) = RHS(J)

RETURN

END
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DOUBLE PRECISION FUNCTION PNS(N,M,X)
IMPLICIT DOUBLE PRECISION (A=H,0-2)
IF (M .LE. N) GO TO 1
PNS = 0.D0O
RETURN
N1 = N-M
IF (M .EQ. @) GO TO 100
DM = DFLOAT(M)
COEFF = 1.D0
DO S I=t .M
COEFF = COEFFeDFLOAT(2¢1=1)
P® = COEFF
IF (N .CT. M) GO TO 7
PNS = PO
RETURN
P1 = POsXsDFLOAT(20M+1)
IF (N .GT. 1) GO TO ®
PNS = P1
RETURN
P =P
PMINUS = PO
DO 10 I=2,N1
PPLUS = 2.D@sXeP = PMINUS
+ DFLOAT(2eM~1)e( XeP=PMINUS )/DFLOAT(I)
PMINUS = P
P = PPLUS
PNS = PPLUS )
RETURN

" - 1.“
1F (N .GT. M) GO TO 187
PNS = PO
RETURN
Pl =X
IF (N .GT. M+1) GO TO 109 <o
PNS = PV
RETURN
PMINUS = PO
P =P
DO 110 I=2,N%
PPLUS = 2.D0eXoP = PMINUS — (XoP = PMINUS)/DFLOAT(1)
PMINUS = P
P = PPLUS
PNS = PPLUS
RETURN
END
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DOUBLE PRECISION FUNCTION PNSP(N,M,X)
IMPLICIT DOUSLE PRECISION (A-H,0-2Z)
N1 = N-M
IF (M .€Q. ©) GO TO 100
DM = DFLOAT(M)
COEFF = 1.D®
DO 5 I=1,M
COEFF = COEFFeDFLOAT(2¢1-1)
P® = COEFF
PP@ = —DMeXePO
IF (N .GT. M) GO TO 7
PNSP = PPO
RETURN
P1 = POeXsDFLOAT(2eM+1)
PP1 = DFLOAT(2eM+1)e( POe(1.D0-Xee2) + XePPO )
IF (N .GT. +3i) GO TO 9
PNSP = PP1
RETURN
P =P
PP = PPI
PMIN =
DO 1@ 1-2 N1
PPLUS = 2.D0eXeP — PMIN + DFLOAT(2¢M-1)e(XsP-PMIN)/DFLOAT(I)
PPPLS = ( DFLOAT(I+2sM)e(1.D0—Xee2) + DMeXes2 )oP
= DMeXePPLUS + XoPP
PMIN = P
P = PPLUS
PP = PPPLS
PNSP = PPPLS
RETURN

PO = 1.DO
PPO = 0.D0
IF (N .GT. 8) GO TO 107
PNSP = 0.D0
RETURN
Pl=X
PPl = 1.D8 = XeX
IF (N .GT. 1) GO TO 109
PNSP = PP1
RETURN
PMIN = PO
P =Pt
PP = PPY
DO 110 I=2 N1
PPLUS = 2.D0eXeP = PMIN = ( XeP-PMIN )/DFLOAT(I)
PPPLS = DFLOAT(1)ePP1eP + XePP
PMIN » P
P = PPLUS
PP = PPPLS
PNSP = PPPLS
RETURN
END
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SUBROUTINE DMATIN(A,N,B,M,DETERM, NMAX)
IMPLICIT DOUBLE PRECISION (A-H,0-2)
DOUBLE PRECISION INDEX
DIMENSION A(NMAX,N),B(NMAX ,M),PIVOT(100), INDEX(100)
DETERM=1.D®
DO 20 l=1,N
PIVOT(1)=0.D0®
20 INDEX(1)=e.De
DO 558 I=1,N
AMAX=® . DO
DO 105 J=i,N
IF (PIVOT(J).NE.@.D@) GO TO 105
DO 100 Kw1 N
1F (PIVOT(K).NE.©.DR) GO TO 100
TEMP=DABS (A(V.K))
IF (TEMP.LT.AMAX) GO TO 100
TROW=J
1COLUM=K
AMAX=TEMP
100 CONTINUE
105 CONTINUE
INDEX(1)=4.096D3¢DFLOAT ( IROW)4+DFLOAT ( ICOLUM)
J=IROW
AMAX=A(J, ICOLUM)
SUPPRESS CALCULATION OF DETERMINANT sescesesee
DETERM=AMAXsDETERM
IF (DETERM.EQ.0.D8) GO TO 600
PIVOT ( 1COLUM)=AMAX
IF (IROW.EQ.ICOLUM) GO TO 280
DETERM=—DETERM
DO 200 Ke1,N
SWAP=A(J,K)
A(J,.K)=A(1COLWM,K)
200 A(ICOLUM,K)=SWAP
IF (M.LE.®) GO TO 260 - - : -
DO 250 Km1 ,M
SWAP=8(J ,K)
B8(J.K)=B(1COLWM,K)
250 B(ICOLUM,K)=SWAP
260 K=]COLUM
A(1COLUM,K)=1.D®
DO 350 K=1,N
350 A(JCOLUM,K)=A( ICOLUM,K)/AMAX
1IF (M.LE.®) GO TO 380
DO 370 K=t ,M
370 B(ICOLUM,K)=B(1COLUM,K)/AMAX
380 DO 550 J=1,N .
IF (J.EQ.ICOLUM) GO TO 550
T=A(J, ICOLLM)
A(J, ICOLUM)=0 . DO
DO 450 K=1,N
450 A(J.K)=A(J,K)-A(ICOLUM,K)eT
IF (M.LE.®) GO TO 558
DO 508 K=i ,M
500 B(J,K)=B(J,K)-B{ICOLUM,K)sT
550 CONTINUE
600 DO 710 1=1,N
1 YmN4+1-=]
K=JDINT(INDEX(11)/4.096D3)
1COLUM=IDINT (INDEX(11)=4.098D3+DFLOAT(K))
IF (K.EQ.ICOLW) GO TO 710
DO 785 J=1,N
SWAP=A(J,K)
A(J,K)=A(J, ICOLLM)
765  A(J, ICOLUM)=SWAP
710  CONTINUE

\f
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NUMBER OF POINTS: 12 R= 4.000
X1 Y1t X12 Yi2
RES. FNCS. A 1.169470 1.043303 —0.427212 -2.204477
RES. FNCS. B -0.020331 0.098152
RES. FNCS. C  1.000286 1.0042286 -0.015631 0.008458
RES. FNCS. G ©.110028 ©.003564 -0.255392 -0 .008486
RES. FNCS. H -2.000331 ©.019701

RES. FCNS. X11M+X12M,Y11M+Y12M,Z11M+Z12M: 1.094B51 ©.971180 ©.998097

X11 Y11 X12 Y12
MOB. FNCS. A  ©.986769 ©.999716 ©.360471 0.185314
MOB. FNCS. B 0.000120 -2.0631251
MOB. FNCS. C ©.999948 0.998914 0.015625 -2.007769
MOB. FNCS. G ©.eeS55e4 ©.000020 -0.070784 -0.0022604
MOB. FNCS. H -0.000750 0.019569
MOB. FNCS. X1M, Y1M AND Zﬂl.: -1.072550 -0.970228 -0.998097
MOB. FCNS. K,L,M AND J: -2.00190 -9.02787 0.16741 ©.00184

Sample output from MANDR.FOR
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available. Our technique is successful at all sphere-sphere separations
except at the almost-touching (gaps of less than .005 diameter) configuration.
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New results for the stresslet functions have been used to determine
Batchelor and Green's (1972) order c2 coefficient in the bulk-stress (7.1
instead of their 7.6). The two-sphere functions have also been used to
determine the motion of a rigid dumbbell in a linear field. We also show that
certain functions have extrema. The source (FORTRAN) code is furnished in the

appendix.
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